
pyEMTO
A Python based toolkit for EMTO

Henrik Levämäki
University of Turku

Matti Ropo
Tampere University of Technology

COMP Centre of Excellence, Aalto University

Mini-symposium, KTH, Stockholm
10.2.2015

WHAT IS PYEMTO?

I Collection of tools which are used to:

1. Generating EMTO input files and corresponding batch
scripts

2. Running common tasks e.g. calculation of equilibrium
volume and elastic constants

3. Analyzing the results

I Written in Python
I Similar in concept to the Atomic Simulation Environment

(ASE)

WHY PYTHON?

I Easy to write and learn
I ⇒ Development with Python very fast
I Python interacts very well with Unix shell
I EMTO calculations controlled by Python scripts:

1. Integration with the cluster’s job scheduler (currently only
SLURM implemented)

2. Generating large amounts of input files becomes faster
3. High-level algorithms possible (automatically find eq.

volume etc.)

MOTIVATION

Development began when we needed a tool that can generate
hundreds/thousands of EMTO input files as easily as possible.

⇒ Doing the same by hand not so much fun.

The goal is to minimize time spent on ”repetitive” tasks:
I Automate things that can be reliably automated
I Avoid typos in input files

FEATURES

Input file generation:

I Every EMTO sub-program has been implemented:
I BMDL, KSTR, SHAPE, KGRN and KFCD

I Every possible EMTO input parameter is accessible via the
”set values” function:
some_system.emto.set_values(amix=0.02,

afm=’M’,
iex=10,
dx=0.015)

I All parameters have sensible default values (if possible)

FEATURES
Input file generation:
Example: Create input files for an hcp c/a -grid

latnames = [’hcp ca1’,’hcp ca2’,’hcp ca3’,’hcp ca4’,
’hcp_ca5’,’hcp_ca6’,’hcp_ca7’]

dmaxs = [2.39196429,2.41107143,2.43017857,2.44928571,
2.46839286,2.4875,2.50660714]

for i in range(len(latnames)):
structure.lattice.set_values(jobname=latnames[i],latpath=latpath,

lat=’hcp’,kappaw=[0.0,-20.0],msgl=0,
ca=cas[i],dmax=dmaxs[i])

structure.lattice.bmdl.write_input_file(folder=latpath)
structure.lattice.kstr.write_input_file(folder=latpath)
structure.lattice.shape.write_input_file(folder=latpath)
structure.lattice.batch.write_input_file(folder=latpath)

FEATURES

SLURM integration:

I pyEMTO knows when a specific task has finished running:

Submitted batch job 1021841
Submitted batch job 1021842
Submitted batch job 1021843
Submitted batch job 1021844
Submitted batch job 1021845
Submitted batch job 1021846

wait_for_jobs: Submitted 6 jobs
wait_for_jobs: Will be requesting job statuses every 60 seconds

0:01:00 {’RUNNING’: 6} (0% completion)
0:02:00 {’RUNNING’: 6} (0% completion)
0:03:00 {’RUNNING’: 6} (0% completion)
0:04:00 {’COMPLETED’: 4, ’RUNNING’: 2} (66% completion)
0:05:00 {’COMPLETED’: 6} (100% completion)
completed 6 batch jobs in 0:05:00

FEATURES

SLURM integration:

I This feature can be used to join tasks to form more
complicated operations:

Calculate elastic constants based
on the results of EOS calculations:

sws0,ca0,B0,e0,R0,cs0 =
ti_hcp.lattice_constants_batch_calculate(sws=sws_array)

The script will wait here until the EOS calculations finish

ti_hcp.elastic_constants_batch_calculate(sws=sws0,bmod=B0,ca=ca0,
R=R0,cs=cs0)

FEATURES

Result analysis:
I High-quality EOS fitting module:

I Morse, Murnaghan, Birch-Murnaghan, SJEOS, Vinet,
Pourier-Tarantola, Anton-Schmidt, Taylor series,
Polynomial

I 2nd order polynomial fit for initial values increases
robustness

FEATURES

Result analysis:
I High-quality EOS fitting module:

5.2.2015 -- 16:21:13
JOBNAM = fe1.00 -- PBE

Using morse function

Chi squared = 2.7459052408e-10
Reduced Chi squared = 1.3729526204e-10
R squared = 0.999907593903

morse parameters:

a = 0.117551
b = -122.663728
c = 32000.491593
lambda = 2.370150

Ground state parameters:

V0 = 2.640005 Bohrˆ3 (unit cell volume)
= 2.640005 Bohr (WS-radius)

E0 = -2545.606678 Ry
Bmod = 195.204183 GPa
Grun. param. = 3.128604

sws Einp Eout Residual err (% * 10**6)
2.600000 -2545.605517 -2545.605515 0.000002 -0.000870
2.620000 -2545.606394 -2545.606400 -0.000006 0.002524
2.640000 -2545.606680 -2545.606678 0.000002 -0.000950
2.660000 -2545.606435 -2545.606426 0.000009 -0.003632
2.680000 -2545.605705 -2545.605716 -0.000011 0.004368
2.700000 -2545.604616 -2545.604612 0.000004 -0.001440

FEATURES

Result analysis:
I Obtain elastic constants:

cubic_elastic_constants

fe1.00

c11(GPa) = 299.60
c12(GPa) = 142.70
c44(GPa) = 105.95
c’ (GPa) = 78.45
B (GPa) = 195.00

Voigt average:

BV(GPa) = 195.00
GV(GPa) = 94.95
EV(GPa) = 245.07
vV(GPa) = 0.29

Reuss average:

BR(GPa) = 195.00
GR(GPa) = 92.92
ER(GPa) = 240.55
vR(GPa) = 0.29

Hill average:

BH(GPa) = 195.00
GH(GPa) = 93.93
EH(GPa) = 242.81
vH(GPa) = 0.29

Elastic anisotropy:

AVR(GPa) = 0.01

FEATURES

Result analysis:

I Utility functions for plotting:
I EOS-curve + data points
I Magnetic moments vs. volume
I etc.

Now a brief real-time demonstration

